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This paper reports the results of a theoretical and experimental study of steady two- 
layer flow over a fixed two-dimensional obstacle. A classification scheme to predict the 
regime of flow given the maximum height of the obstacle, the total depth of flow, and 
the density and flow rate of each layer, is presented with experimental confirmation. 
There are differences between this classification scheme and that derived for flow over 
a towed obstacle by Baines (1984, 1987). These differences are due to the motion of 
upstream disturbances in towed obstacle flows. Approach-controlled flows, i.e. flows 
with an internal hydraulic control in the flow just upstream of the obstacle are studied 
in detail for the first time. This study reveals that non-hydrostatic forces, rather than 
a shock solution (called an internal hydraulic drop by previous investigators), need to 
be considered to explain the behaviour of Approach-controlled flows. 

1. Introduction 
This paper considers the steady, unidirectional flow of two layers of fluid of slightly 

different density over a fixed two-dimensional obstacle. To model tidally driven flows, 
or flows driven by large-scale pressure gradients in the atmosphere, barotropic forcing 
is assumed (i.e. sufficiently far upstream and downstream of the obstacle both layers 
move horizontally at the same speed). This study was motivated in part by the detailed 
observations of a remarkable variety of internal hydraulic phenomena in tidally driven 
flow over fjord sills by Farmer & Smith (1980), and Farmer & Freeland (1983). 
Motivation was also provided by a proposal of the US Army Corps of Engineers (1980) 
to build an underwater sill in Carquinez Strait to reduce the intrusion of saline water 
from San Francisco Bay through Carquinez Strait into the Sacramento-San Joaquin 
delta. For these cases variations in the flow are often negligible in the time it takes for 
fluid to pass over the sill, and the assumption of steady flow is warranted. 

Considerable understanding of two-layer flow over an obstacle has been gained from 
towing-tank experiments, notably those of Long (1954) and Baines (1984). Two-layer 
towing-tank experiments are started with an obstacle at rest near one end of a tank 
containing two layers of immiscible fluid. The obstacle is then accelerated to a constant 
speed that is maintained until it approaches the other end of the tank. The intent is to 
create a steady flow in the neighbourhood of the obstacle while the obstacle is travelling 
at constant speed. In the flows of greatest interest, interfacial disturbances are 
generated that propagate upstream of the obstacle. It is worth considering the nature 
of these disturbances, since in many cases they result in the flow being unsteady in the 
neighbourhood of the obstacle throughout the experiment, 

Baines (1984) has identified the three types of upstream disturbance depicted in 
figure 1.  The nature of these disturbances is dependent upon the thickness of the lower 
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FIGURE 1. Examples of the three types of upstream disturbance generated in the towed-obstacle 
experiments of Baines (1984). The sketches are drawn in the frame of reference of the obstacle, which 
is being towed from left to right. (a) A bore (or moving hydraulic jump): an increase in propagation 
speed with increasing lower-layer thickness results in an internal bore moving upstream with velocity 
c,. (b) A rarefaction (or negative wave): a disturbance that grows in length, since the leading portion 
of the disturbance travels faster than the trailing portion. (c) A combination of a bore and a 
rarefaction. 

layer just upstream of the obstacle, y2u, and the thickness of the lower layer far 
upstream of the obstacle, y20, which equals the initial thickness of the lower layer before 
the obstacle is set in motion. To a first approximation the internal phase speed of a 
disturbance at any location is proportional to the square root of the product of the 
upper- and lower-layer thicknesses at that location. Consequently, the phase speed 
peaks at a lower layer thickness, y2p, that is approximately one-half the total depth, see 
Baines (1984). If yzu < y2p,  as in figure 1 (a), the increase in propagation speed with 
increasing lower-layer thickness will cause a steepening of the disturbance resulting in 
an internal bore which, in the absence of friction, moves upstream at a constant 
velocity, cb, with respect to the obstacle. If yzo > y Z p ,  as in figure 1 (b), the disturbance 
will grow in length since, in this case, the thicker the lower layer the slower the 
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FIGURE 2. Definition diagram for steady two-layer flow over a fixed obstacle. The flow is drawn 
from right-to-left to correspond to the orientation of the photographs of the experiments. 

propagation speed. The analogous phenomena is termed a ‘negative wave’ in open 
channel hydraulics (Henderson 1966); however, Baines (1984, 1987) adopts the term 
‘rarefaction’ from gas dynamics. The third possibility, yzu  > y,, > yzo ,  depicted in 
figure 1 (c), is a combination of a bore and a rarefaction. 

Consider the nature of the flow incident on an obstacle towed at constant velocity, 
U, in the presence of upstream disturbances. The simplest case is that of the upstream 
bore. Once the bore has formed, the flow is steady in the vicinity of the obstacle. In the 
reference frame of the obstacle the flow rates in the upper and lower layers upstream 
of the bore are 4: = Uy,, and q t  = Uyz0, respectively, where y,, is the initial thickness 
of the upper layer. The flow rate of each layer in the vicinity of the obstacle must be 
adjusted to account for the motion of the bore; i.e. q1 = 4: + cb h,, and q, = qz - c, h,, 
where h, is the height of the bore. For flows with rarefactions, steady flow in the 
vicinity of the obstacle can, in principle, still be achieved. However, Baines (1984, p. 
156) reports that : ‘ In the regions where upstream rarefaction takes place, quantitative 
measurement of its magnitude was not possible because in most cases, the length of the 
tank was insufficient for the flow to reach steady state near the obstacle’. The results 
of Baines (1984) show that all upstream disturbances are rarefactions in flows with 
r 2 0.5, where r = y z o / Y ,  and Y = ylo+yzo+h, is the total depth of fluid. For Y < 0.5 
some upstream disturbances are rarefactions. Therefore, the towed obstacle technique 
may not be an effective means of investigating steady flows, especially if r 2 0.5. For 
this reason Baines (1984) concentrates on flows with r < 0.5. 

To study steady two-layer flow over an obstacle it is most effective to fix an obstacle 
to the bottom of a flume and to allow two fluids of different density to flow over it at 
a constant rate, as depicted in figure 2. In the present study fresh and salt water were 
used, and a steady flow, devoid of any bores or rarefactions, was maintained for several 
hours at a time. Section 3 of this paper describes how the experimental facility was 
configured to ensure that, without the obstacle in place, both layers have the same 
velocity. This provides an initial, or undisturbed, flow analogous to the towed obstacle 
experiments we can write 

(1) r = Y z o /  y = 42/49 

where 4 = q1 + q2, and q1 and q2 are the two-dimensional flow rates for the upper and 
lower layers, respectively. The fixed-obstacle approach also has the advantage of being 
more convenient for gathering data, since probes and visualization equipment do not 
have to be towed down the tank with the obstacle. The use of miscible fluids also 
permitted a study of mixing between the layers, the results of which will be presented 
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in a subsequent paper. Neither towed-obstacle nor fixed-obstacle experiments 
accurately represent all the important features of natural flows. Rather, they place 
useful bounds on the range of expected behaviour, and should be regarded as providing 
complementary rather than conflicting information. 

The objectives of this study are to identify and investigate the nature of the basic 
regimes of steady two-layer flow over an obstacle in greater detail than has been 
possible in towed obstacle experiments, and to develop a classification scheme to 
predict, for any given set of conditions, which regime will occur. A review of internal 
hydraulic theory is presented §2. Section 3 provides a description of the experimental 
apparatus and procedures. The derivation of the classification scheme is given in $4. 
Section 5 provides a comparison of theoretical predictions with laboratory and field 
observations. Conclusions are presented in 0 6. 

2. Basic internal hydraulic theory 
A brief summary of internal hydraulic theory is presented in this section. Readers 

interested in more detailed accounts are referred to the papers of Baines (1984, 1987), 
Armi (1986), and Lawrence (1990). The present study considers the steady, 
unidirectional two-layer flow of an incompressible fluid over an isolated two- 
dimensional obstacle, located in an otherwise horizontal channel of constant width, see 
figure 2. A series of assumptions will be presented that simplify the equations of 
motion. Although there are a number of circumstances where one or more of these 
assumptions is violated, the resulting equations accurately describe many of the 
features of two-layer flow over an obstacle. 

We begin by assuming that there is no mixing so that the density along a streamline, 
ps, is constant. With the second assumption of inviscid flow the equations of motion 
become 

(2) 
1 ap* - a(v2/2) 

Ps as as 

- and (3) 

where s is the streamwise direction, n is the direction normal to the streamline passing 
through its center of curvature, r,  is the radius of curvature of the streamline, and u is 
the fluid velocity. Lawrence (1984) and Jirka (1984) have demonstrated that it is the 
piezometric pressure, P* = P+p, gz,  not the pressure P, that is of primary importance 
in the study of internal hydraulics, where g is the gravitational acceleration, and z is 
elevation above the horizontal bed of the channel. 

If the sill is ‘gentle’, that is, if its minimum radius of curvature is much greater than 
its height, it is customary (see Long 1954) to make a third assumption, called the 
hydrostatic assumption, that aP*/an = 0. Cases where non-hydrostatic pressures are 
important even when the sill is gentle will be discussed in $ 5 ,  but for the moment 
hydrostatic pressure is assumed. The fourth assumption is that if the maximum sill 
slope is small, then the streamlines will be essentially horizontal and the flow is one- 
dimensional. In this case we can replace s by x, and v by u, where x and u are the 
horizontal direction and velocity, respectively. 

We make a fifth assumption that the flow is layered, and that within each layer the 
density is constant and the velocity varies only in the flow direction. So we set 
u, = q,/y,, where the velocity, two-dimensional flow rate, and thickness of each layer 
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are denoted by un, qn, and y ,  respectively, with n = 1 for the upper layer and n = 2 for 
the lower layer. With the above assumptions the piezometric pressure is constant 
within each layer, and given by 

PT = Plg(Y,+Y,+h)? (4 4 
and p: = PlgYl+Pzg(.Yz+h), (4 b) 

where h is the height of the obstacle. If the above assumptions hold then 

where 

is the Bernoulli constant (mechanical energy per unit volume). Equations (4) and (5) 
can be rewritten in the form 

where 

db dc 
dx dx’ 

A - = -  

A = [  1-eF; l-s I-sF;’ 1 ] b = E:], c = [I:]. 
The densimetric Froude numbers of the individual layers are denoted by Fi.  = u:/g’yn, 
where the reduced gravitational acceleration, g’ = eg, and the relative density 
difference, s = @2-pl ) /p2 .  Solving (6) for y1 and y z ,  and noting that the free-surface 
elevation, Y = y1 + y z  + h, gives 

dY - eFyFidh 
dx 1-G’d.x’ (7) - - -- 

where the composite internal Froude number, G2 = F ;  + Fi-eF; Fi. Lawrence (1990) 
has shown that even though the composite Froude number is not a Froude number in 
the strictest sense (it is not the ratio of a convective velocity to a long-wave phase 
speed), it correctly specifies the criticality of the flow; i.e. if G2 < 1 the flow is internally 
subcritical, if G2 = 1 it is internally critical and if G2 > 1 it is supercritical. 

The sixth assumption is the Boussinesq assumption that s < 1. In the present study 
we shall only deal with flows with Fi = O( l), so that from (7) we can make the seventh 
assumption of a horizontal free surface. With this assumption attention can be focused 
on the variation in interface height, which, from (6) and the Boussinesq approximation, 
is given by 

where lengthscales normalized with respect to Y have been used, i.e. the dimensionless 
horizontal distance x = x/ Y, the dimensionless obstacle height, p = h/ Y, and the 
dimensionless interfacial deflection, 7 = (h + y z  - y,J/ Y.  Using (1) we obtain 
7 = /3+yz /Y-r .  

Any location where G2 = 1 is customarily called a control, and is of importance since 
to avoid an interface slope (8) requires that dp/dx = 0. Thus a control can only occur 
either at the crest of the obstale, or in the horizontal channel upstream or downstream 
of the obstacle. If a control location is known, then the condition G2 = 1 is used in 
conjunction with the requirement that the flow passes from subcritical to supercritical 
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at a control, to determine the interface height at the control. L‘H6pital’s rule must then 
be applied to obtain the interfacial slope at the control; i.e. 

The sign in front of the square root is chosen to ensure transition from subcritical to 
supercritical flow at the control. Finally (8) is used to determine the variation in 
interfacial elevation both upstream and downstream of the control, see 0 5.2. 

An alternative to the above procedure is to define a dimensionless internal energy: 

The flow rate ratio, r ,  has been included in this definition to ensure that, if u1 = u2, then 
from 5(b), E = 0. So the dimensionless internal energy becomes a measure of the 
deviation of the flow from the assumed undisturbed state in which u1 = u,. Given (6) 
and (10) and the horizontal-free-surface assumption we can write 

_ -  - 0. dE 
dX 

This result is fundamental to internal hydraulic theory, but is only valid when the seven 
assumptions listed above are satisfied. If one or more of these assumptions is violated, 
as is the case in internal hydraulic jumps and regions of flow separation, then (1 1) does 
not hold. Substituting from (6), and using the horizontal-free-surface and Boussinesq 
assumptions, gives 

where the undisturbed composite Froude number, Gi = q2/{g’r(l - r )  Y’}. For the 
flows considered in this paper Gi and r are fixed so that once the internal energy is 
known at a point of control, (1 1) can be solved to obtain 7 as a function of the p. 

Several investigators, including Lawrence (1989, Farmer & Denton (1985), Denton 
(1987) and Dalziel (1990), have recognized that 

aE/a7 = I - ~2 (13) 
and made use of (E,  r)-curves to represent two-layer flows. Two such curves for a flow 
with r = 0.5, and Go = 0.5 are presented in figure 3. In the first, with /3 = 0.5, 7 is a 
monotonically decreasing function of E and (13) tells us that the flow must be 
supercritical no matter what the position of the interface. From Lawrence (1985, 
Appendix C) this only occurs if and only if 

If the inequality is reversed in (14), as in the second case with p = 0, there are values 
of E for which there are three possible interface positions: one corresponding to 
supercritical flow with a thin upper layer; one corresponding to supercritical flow with 
a thin lower layer; and one corresponding to subcritical flow. The (E, q)-curves help us 
predict which of the three possible interface positions will occur. Such curves are 
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3. Experimental design and procedures 
The experimental facility was designed to produce a sustainable, steady two-layer 

flow over a two-dimensional obstacle. The intent was to allow a more effective study 
of steady flows than is possible in towing-tank experiments. Figure 4(a) is a 
photograph of an experiment in progress. A steady two-layer flow of fresh (clear) water 
and saline (dyed) water is flowing from right to left over a fixed obstacle, see figure 4(b). 

The plan view of the facility (figure 4c)  shows that the flow first passes through a 
fixed contraction, then through a constant-width flume (the test section), and finally 
through an adjustable downstream contraction. This configuration was specifically 
chosen to model barotropically driven flows, since, for inviscid, Boussinesq flows, 
Wood‘s (1968) result shows that when there is no obstacle, both layers will have the 
same velocity throughout the facility. When the flow is subcritical in the test section, 
i.e. G: < 1, an internal hydraulic control (called a ‘virtual control’ by Wood 1968) will 
be located in the downstream contraction. Placing an obstacle in the test section may 
add an additional control in the vicinity of the obstacle, but will not affect the virtual 
control. If the flow is supercritical in the test section, i.e. Gt > 1, then a virtual control 
will be located in the upstream contraction. The presence of an obstacle within the test 
section will not, in general, add an additional control, it will merely cause the flow to 
become more highly supercritical as it passes over the obstacle. These results are crucial 
to the development of the classification scheme presented in $4,  



612 G. A .  Lawrence 

Inflow section 
(4 

Adjustable 
downstream contraction 
contraction 

Pipe 

FIGURE 4. The experimental setup: (a) a view of an experiment in progress 
(looking downstream): (b) side view: (c) plan view. 

The details of the experimental set-up can be explained with the help of the side view 
given in figure 4(b). Fresh water from the mains supplies one constant-head tank, and 
salt water drawn from San Francisco Bay into a 370 m3 pond supplies the other. The 
maximum discharge from each of these head tanks is lo-' ma/,, so the experiment can 
be run at maximum flow for 10 hours before the salt water pond is emptied. The basic 
experimental data for each of the 25 experiments are listed in table 1. The discharges 
are measured to within k 2 % by a pair of orifice meters. The total two-dimensional 
discharge varied between 0.007 and 0.05 m2/s. Thus, defining Reynold's number, 
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Exp . 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Y 
(cm) 
43.8 
38.1 
51.4 
46.8 
30.5 
26.5 
39.2 
36.3 
32.1 
30.2 
28.4 
25.7 
56.7 
35.9 
51.4 
32.0 
40.2 
39.4 
46.5 
46.2 
51.1 
44.1 
41.4 
26.2 
43.8 

41 42 g' 
(cmz/s) (cm*/s) (cm/s2) 

23 
43 
57 
57 
24 
23 
51 
51 
57 
57 
57 

100 
101 
72 

101 
72 

101 
145 
204 
249 
204 
204 
204 
101 
34 

47 
86 

112 
112 
47 
46 

112 
112 
112 
112 
112 
200 
101 
72 

101 
12 
99 

145 
204 
249 
205 
204 
204 
101 
94 

17.9 
20.4 

5.7 
5.6 
5.9 
5.9 
5.5 
5.6 
5.6 
5.7 
5.9 

17.9 
8.4 

14.0 
7.9 

13.4 
8.0 

12.8 
14.8 
18.4 
8.8 
8.9 
8.9 
7.5 
7.5 

r b, Go Regime 
0.67 0.34 0.12 I 
0.67 0.39 0.26 I1 
0.66 0.29 0.41 I1 
0.66 0.32 0.47 I1 
0.66 0.49 0.36 II/III 
0.66 0.57 0.44 111 
0.66 0.38 0.62 111 
0.66 0.41 0.69 111 
0.66 0.47 0.83 IT1 
0.66 0.50 0.90 III/IV 
0.66 0.53 0.97 IV 
0.67 0.58 1.15 IV 
0.50 0.26 0.32 I1 
0.50 0.42 0.36 TI 
0.50 0.29 0.39 TI 
0.50 0.47 0.44 I11 
0.49 0.37 0.55 I11 
0.50 0.38 0.66 IT1 
0.50 0.32 0.67 I11 
0.50 0.32 0.74 111 
0.50 0.29 0.75 111 
0.50 0.34 0.93 III/IV 
0.50 0.36 1.02 1V 
0.50 0.57 1.10 IV 
0.74 0.34 0.37 I 

TABLE 1. Experimental data. Note: The maximum height of the obstacle 
is 15 cm in all experiments 

Re = q/v, yields values varying between 7000 and 50000, which are higher than most 
laboratory experiments. Pipes leading from the constant-head tanks discharge fluid 
evenly across the width of the inflow section. The splitter plate installed between these 
pipes was hinged so that its trailing edge could be set at the height of the interface in 
the flow section to minimize mixing between the two fluids. 

In some of the experiments velocity and density profiles were measured at a limited 
number of locations using a miniature propeller meter and a conductivity probe. 
Details of the instrumentation are given in Lawrence (1985). However, in most cases 
the interface level was visualized by colouring one or both of the layers with dye. The 
velocity and density measurements for experiment 21 are plotted in figure 5 together 
with the visual measurements of the interface level. Upstream of the obstacle the 
density interface is about 1 cm thick and visual observations of interface level are 
accurate to within about f 3 mm. As the flow passes over the obstacle, the lower layer 
accelerates, and the shear across the interface generates instabilities and mixing 
between the two layers. This can be seen in figure 6 (plate 1) where the blue and red 
dyes of the upper and lower layers mix to form a purple interfacial region. Once 
significant mixing has occurred visual observations of the interface level are less 
reliable. However, this is of no great concern since the interface position in regions of 
the flow where mixing is minimal are of greatest interest in the present study. 

The density of each fluid was measured in the inflow section using a hydrometer that 
enabled the relative density difference to be determined to within 0.0003. The relative 
density differences used were in the range 0.0057 < E < 0.0209. The glass-sided flume 
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0 

x (m) 
FIGURE 5. Density (m) and velocity (0) profiles at x = - 1.0 m, 1.0 m, and 5.0 m in experiment 21 
plotted together with visual observations of interface position. Density is measured in gt units, where 
p(aJ = p(kg/ma) - 1000, and velocity in cm/s. Flow is from left to right. 

is 12.8 m long, 37.6 cm wide, and the depth of flow varied from 25.7 cm to 56.7 cm over 
the series of experiments. Since the relative density difference E < 1 there is essentially 
no longitudinal variation of the free-surface elevation within the test section. The free- 
surface elevation was controlled by varying the width of the downstream contraction. 
Variations in the inflow rates caused the free surface to fluctuate about k 1 mm. The 
measurement error was about & 1 mm. 

The obstacle shape satisfies the equation 

h(x) = h,  COS' (x /L)  (15) 
to within k2 mm over the range Ix/LI < in, where the maximum height of the 
obstacle, h, = 150 mm, and the lengthscale L = 4h,. The cosine squared function was 
chosen, since for a given length and height of the obstacle, the maximum values of 
obstacle slope and curvature are relatively low when compared with other possible 
obstacle shapes. 

4. Classification scheme 
It was found experimentally, and will be shown theoretically, that there are four 

basic regimes of steady two-layer flow over a fixed two-dimensional obstacle. These 
regimes are shown in figure 7, which presents photographs of experiments representing 
each of the four regimes alongside the corresponding (E, 7)-curves. In Regime I 
(Subcritical flow) the flow is subcritical everywhere with the obstacle causing a slight 
depression in the interface level, see figure 7(a) .  In Regime I1 (Crest-controlled flow) 
the flow passes from subcritical to supercritical at the crest of the obstacle, and then 
becomes subcritical again downstream of an internal hydraulic jump, see figure 7 (b). 
For Regime I11 (Approach-controlled flow) the flow passes from supercritical to 
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subcritical just before the start of the obstacle, and like Crest-controlled flow becomes 
subcritical again downstream of an internal hydraulic jump, see figure 7(c). In Regime 
IV (Supercritical flow) the flow is supercritical everywhere with the interface rising 
as the flow passes over the sill, see figure 7 ( d ) .  Regimes I, 11, and IV have direct 
counterparts in single-layer (open channel) flow, and the variation in interface level is 
analogous to the variation in free-surface level in single-layer flows. On the other hand, 
Regime I11 (Approach-controlled flow) is new and has no counterpart in single-layer 
flow. It has several unique features that will be discussed below. 

For steady two-layer flow over a fixed obstacle there are five important variables: 
Y, h,, g’, ql, q2. From these variables the following three non-dimensional parameters 
can be formed to specify any particular flow: the flow rate ratio, r = qJq; the non- 
dimensional maximum obstacle height, /3, = h,/ Y ;  and the undisturbed composite 
Froude number, Go = q/(g’r(l - r )  Y’);. The values of these parameters for the 
experiments discussed in this paper are listed in table 1. The classification scheme 
provides, for a given r,  diagrams indicating regions of the Vrn, G,)-plane corresponding 
to each of the flow regimes. 

For a given set of basic parameters (r,  /3,, and Go) the (E, q)-curve only changes as 
the flow passes over the obstacle; i.e. as /3 changes. Of primary concern are the (E, 7)- 
curves for /3 = 0 and /3,,,, referred to as the channel and crest curves respectively. For 
a large range of parameters these curves have both a local maximum and a local 
minimum in E. The local minimum of the crest curve, denoted E,, is the internal energy 
at the crest in a Crest-controlled flow, see figure 7(b). In figure 7(c) we see that a control 
can occur in the flow as it approaches the obstacle. At this ‘approach-control’ the 
internal energy is the local maximum of the channel curve, E,. 

To make use of the (E, 7)-curves we must be able to predict the value of E. Wood’s 
(1968) result that u, = uz at a virtual control in a Boussinesq flow yields E = 0, a 
condition that would hold throughout the channel if all the assumptions made in $2 
were satisfied. Typically they are not. Significant amounts of energy are dissipated 
(primarily in the lower layer) in an internal hydraulic jump, resulting in a drop in 
internal energy; in addition, streamline curvature as the flow passes over the obstacle 
causes significant variations in E, see figures 7 (b) and 7 (c). Smaller variations in E can 
arise from violations of the one-dimensional assumption that within each layer the 
density is constant and the velocity varies only in the flow direction. Vertical variations 
in velocity and density within the layers in experiment 21 are shown clearly in figure 
5. Upstream of the obstacle the flow is distinctly two layered, but downstream of the 
crest the velocity profiles become complicated by the presence of the internal hydraulic 
jump, and the density interface thickens as a result of mixing between the layers, see 
figure 6 also. 

The drop in E across the internal hydraulic jump is incorporated into the 
classification scheme ; however, incorporation of other variations in internal energy 
would complicate the classification scheme so much as to make it unusable. For the 
purpose of deriving the classification scheme it is assumed that, if there is an internal 
hydraulic jump in the flow, then E is constant and greater than zero upstream of it and 
equal to zero downstream of it. In the absence of an internal hydraulic jump E is 
assumed to be equal to zero everywhere. 

We can now construct the classification scheme. Regime I (Subcritical flow) occurs 
when E, < 0, and Regime I1 (Crest-controlled flow) occurs when 0 < E, < E,, see 
figures 7 (a) and 7 (b). The remainder of the classification scheme is determined by the 
fact that, when there is no obstacle, if Gi > 1, then the flow is supercritical throughout 
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FIGURE 8. Classification diagrams for (a) r = $, and (b) r = a. The points represent each of the 
experiments. A, Regime I :  Subcritical flows; 0, Regime 11: Crest-controlled flows; 0, Hybrid flows 
exhibiting features of both Regimes I1 and 111; + , Regime 111: Approach-controlled flows; x ,  Hybrid 
flows exhibiting features of both regimes 111 and IV, x , Regime IV: Supercritical flows. 

the test section. With an obstacle in place there are two alternatives. The first, and most 
common, is that the flow remains supercritical throughout the test section, the only 
change being an increase in the Froude number over the obstacle, so Regime IV 
(Supercritical flow) can occur whenever Gi > 1. The second alternative is that when 
0 < E, < E, and Gt > 1 there is the possibility of a jump upstream of the obstacle 
followed by a crest-controlled flow. This alternative has been investigated for the 
towed-obstacle case for very small values of r by Baines (1984), and for single-layer 
flow by Lawrence (1987), but will not be pursued in the present study. Solutions to the 
equations E, = 0, E, = E,, and Gt = 1 have been plotted on the (/lm, Go)-plane, for 
r = f and g, in figures 8(a) and 8(b). The regions of these classification diagrams 
associated with each of the flow regimes are readily apparent. 

The points corresponding to the experiments performed in the present study are 
plotted on figure 8. These experiments verify the classification scheme, although four 
experiments need to be commented on. Experiment 5 falls close to the boundary 
between Regimes I1 and I11 and combines features of both those regimes; similarly 
experiments 10 and 22 fall close to the boundary between Regimes I11 and IV, and 
combine features of both those regimes. These hybrid flows will be discussed further 
in $5.3. Experiment 11 is the only experiment that appears to violate the classification 
scheme. However, of all the experiments, experiment 11 has one of the lowest relative 
density differences and one of the lowest total depths of flow. Accounting for 
experimental error gives Go = 0.97f0.05, so it is not altogether surprising that 
experiment 11 behaves as if it were a Supercritical flow with Go > 1.0. 

The success of the classification scheme deserves some comment, since there are 
several important sources of variation in internal energy, including friction and 
streamline curvature, that have been ignored. Fortunately, these variations are 
generally not significant in the vicinity of internal hydraulic controls. For instance, 
there is significant variation in internal energy in Crest-controlled flows, but 
dE/dx M 0 at the crest, see figure 7(b). So, although internal energy variations are 
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FIGURE 9. Comparison of classification schemes for r = of Baines (1987) for towed-obstacle flows 
with that of the present scheme for fixed-obstacle experiments. -, Curves common to both 
schemes, curve AB separates Regime I (Subcritical flow) from Regime I1 (Crest-controlled flow), and 
curve AF separates Regime 111 (Approach-controlled flow) from Regime IV (Supercritical flow). 
-, Curve AC is found only in the fixed-obstacle scheme of the present paper and separates Regime 
I1 (Crest-controlled flow) from Regime I11 (Approach-controlled flow). ----, Curves AD, BD, and 
DE are all associated with flows with upstream rarefactions and are therefore only found in the 
towed-obstacle scheme of Baines (1987, figure 5). 

important in determining the details of the flows, they have little effect on the position 
of the internal hydraulic controls, and the classification scheme is still effective. 

4. I .  Comparison with classijication scheme of Baines ( 1  987) 
The classification scheme for r = 0.5 is plotted together with the scheme of Baines 
(1987, figure 5 )  in figure 9. The notation is slightly different: Baines (1987) uses 4 
rather than Go, and H rather than p,. As in the case of single-layer flows, see Lawrence 
(1987), the classification schemes for towed-obstacle and fixed-obstacle flows are 
different. Curves AD, BD, and DE are all associated with flows with upstream 
rarefactions and are therefore only found in the towed-obstacle scheme of Baines 
(1987). Curve AC is found only in the fixed-obstacle scheme of the present paper and 
separates Crest-controlled flow from Approach-controlled flow. The bounds on the 
Subcritical and Supercritical flow regimes are the same in both schemes, since there are 
no upstream disturbances associated with these regimes. 

5. Experimental results and discussion 
In this section quantitative comparisons are made between experimental mea- 

surements and the predictions of internal hydraulic theory. Generally, the comparisons 
are excellent. However, there are often portions of the flow where boundary-layer 
separation, non-hydrostatic pressures, internal hydraulic jumps, mixing between the 
layers, and friction are important. In these cases the basic assumptions are violated and 
internal hydraulic theory does not provide accurate predictions. It is often the case that 
the theory provides accurate predictions in one portion of the flow but not in another. 
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FIGURE 10. Boundary-layer separation downstream of the crest in experiment 25. Flow is from right 
to left. The separated region appears black from dye injected through the tube visible downstream 
of the crest. 

FIGURE 1 1. Photograph of experiment 2 showing the presence of lee waves. Flow is right to left. 

Examples from each flow regime will be discussed to illustrate the circumstances under 
which internal hydraulic theory is, and is not, appropriate. 

5.1. Regime I :  SubcriticalJEow 
The (E, v)-curves and photograph of experiment 1 presented in figure 7(a) provide an 
example of Regime I (Subcritical flow). Sections 1 and 3 in figure 7(u) represent the flow 
upstream and downstream of the obstacle respectively. They both fall on the subcritical 
limb of the channel curve. Point 2 representing flow at the crest is on the subcritical 
limb of the crest curve. The path 1-2-3 is particularly simple, since the flow is 
subcritical throughout. There is a slight depression in the interface level and a small 
frictional reduction in internal energy as the flow passes over the obstacle. 

The photograph of experiment 1 (figure 7a) reveals that the point of maximum 
depression is downstream of the crest of the obstacle. Downstream of the crest the 
lower layer diverges and decelerates, causing an adverse piezometric pressure gradient 
that may result in boundary-layer separation. Figure 10 is a photograph of experiment 
25 in which separation has been visualized by injecting dye into the lower layer 
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FIGURE 12. Comparison of the predicted longitudinal variation in interface height in experiment 15 
with experimental measurements. Flow is left to right. 

downstream of the separation point. Given that when the flow separates there is flow 
reversal in the lower layer, the one-dimensional assumption that the velocity varies 
only in the flow direction is violated, and we can expect internal hydraulic theory to be 
compromised. As a result of this (and non-hydrostatic pressures) the flow is not 
symmetric about the crest as internal hydraulic theory would predict. Separation in 
two-layer flow over an obstacle is discussed further in Huppert & Britter (1 982), Jirka 
(1984), Lawrence (1984), and in g5.4. 

For flows near the boundary between Regimes I and 11 the asymmetry of the flow 
becomes more pronounced until a series of lee waves (called an undular jump in the 
hydraulics literature) forms downstream of the crest, as shown in the photograph of 
experiment 2 (figure 1 1 ) .  These lee waves are a non-hydrostatic phenomenon and as 
such are not described by internal hydraulic theory. 

5.2. Regime I I :  Crest-controlled flow 
Experiment 4, depicted in figure 7(b), is an example of Regime I1 (Crest-controlled 
flow). Without the obstacle in place, u, = u2 and E = 0. Unlike subcritical flows, no 
steady flow solution with this internal energy exists, since E, > 0. With the obstacle in 
place choking (upstream influence) occurs raising the level of the interface upstream of 
the obstacle, until the internal energy increases to E,. The flow can then pass over the 
obstacle along the path (1-2-3) shown on figure 7(b). Downstream of section 3 an 
internal hydraulic jump forms to match the subcritical condition imposed downstream 
(section 4). The flow upstream of the obstacle is governed by frictional effects, i.e. a 
frictional backwater curve. If the backwater curve is allowed to extend far enough 
upstream the interface will return to its undisturbed level (7 = 0). 

A test of the validity of internal hydraulic theory in predicting the longitudinal 
variation of interface height is provided by experiment 15 shown in figure 12. The 
predicted interface variation, obtained from (8) and (9), is plotted in figure 12 together 
with the experimental results. The predicted and measured interface heights agree 
extremely well, except just upstream of the internal hydraulic jump where the interface 
level is slightly higher than predicted. Besides experimental error, there are several 
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FIGURE 13. Comparison of experimental measurements of interfacial elevation at the crest with 
predictions for all the crest-controlled flows. 

possible reasons for this. Firstly, the internal hydraulic jump blocks flow in the lower 
portion of the upper layer causing a considerable velocity variation with depth in the 
upper layer, as in figure 5. Secondly, as the lower layer accelerates, the shear between 
the two layers causes shear instabilities and mixing between the two layers, see figure 
6(a). In addition, there may be some non-hydrostatic effects due to streamline 
curvature. 

The validity of internal hydraulic theory in predicting the interfacial elevation at the 
crest is illustrated in figure 13. There is very good agreement between the predicted and 
measured interface deflection in each of the seven crest-controlled flows, since 
dE/dx x 0 at the crest. The predicted values are obtained by taking the smallest positive 
solution to the condition of critical flow (G2 = 1) at the crest. 

5.3. Regime 111: Approach-controlledjow 
Experiment 7 ,  depicted in figure 7 (c) is an example of Regime IT1 (Approach-controlled 
flow), which, unlike the other three regimes, has no counterpart in single-layer flow. It 
is therefore far less well understood than the other three flow regimes. Approach- 
controlled flow corresponds to region B’ in Houghton & Isaacson’s (1970) numerical 
study of impulsively started two-layer flow over an obstacle. They found upstream 
rarefactions, and did not observe the flow asymptoting to a steady state. Similarly, 
approach-controlled flow corresponds to the flow type E of Baines (1984), who shows 
that in towing tanks such flows are always accompanied by upstream rarefactions. As 
discussed in 6 1 these rarefactions do not fully develop in the limited length of a towing 
tank, so steady flow is generally not achieved. The fixed-obstacle experiments of the 
present study are probably the first to achieve steady Approach-controlled flow. 

Approach-controlled flow is similar to Crest-controlled flow in that there is an 
internal hydraulic control associated with the obstacle, and downstream of the crest 
there is an internal hydraulic jump. The fundamental difference is that in Approach- 
controlled flows the internal hydraulic control is located near the foot of the obstacle 
(the exact position is weakly dependent on frictional forces), not at the crest. Between 
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FIGURE 14. (a) Experimental variation in interface height in experiment 17, and the variation 
predicted assuming internal energy conservation. (b)  Energy diagram for experiment 17 showing the 
variation in internal energy as the flow passes over the obstacle. The actual flow path (1-2-3-4) is 
significantly different from the flow path (1-2*-3*-1) that might have occurred if internal energy 
remained constant. 
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the Approach control and the crest the interface rises approximately in accordance with 
(8). However, downstream of the crest the interface plunges rapidly; this behaviour 
cannot be explained using internal hydraulic theory, since the internal energy varies 
dramatically just downstream of the crest, see figures 7(c) and 14(b). 

5.3.1.  Importance ofjlow curvature 
Experiment 17, see figures 6(c) and 14(a), was performed to examine the effects of 

the variation in internal energy in greater detail. The (E, 7)-diagram for this experiment 
is presented in figure 14(b). Lawrence (1985) has shown that the variation in internal 
energy as the flow passes over the sill is far more rapid than can be attributed to 
frictional effects. At the crest there is an increase in internal energy as a result of 
significant streamline curvature. From (4) we see that the convex flow will reduce the 
piezometric pressure in the lower layer more than in the upper layer. By assuming 
hydrostatic flow we will overestimate Ez more than Et, so from (lo), the internal energy 
(calculated on the assumption of hydrostatic flow), will increase. This situation reverses 
on the lee side of the obstacle when the flow changes curvature. An important 
experimental observation is that downstream of the crest the interface falls slightly at 
first and then plunges rapidly. Across this ‘supercritical leap’ the flow changes from 
one that is supercritical with F ;  $- F i  (i.e. an ‘active’ upper layer in the terminology of 
Armi 1986), to one that is supercritical with Fi % Ft  (i.e. an active lower layer). Once 
the lower layer is the active layer the flow can jump (at section 3) to match the 
subcritical condition imposed downstream (section 4). The loss of internal energy in the 
internal hydraulic jump is consistent with the observation that turbulent dissipation 
occurs almost exclusively in the lower layer, see Wood & Simpson (1984). 

If the internal energy were to have remained constant over the obstacle the flow 
would have had to follow the path 1-2*-3*-1 on figure 14(a). Long (1954) 
hypothesized that a form of internal hydraulic jump, which he called a ‘hydraulic 
drop’, might occur at a point between the crest and the end of the obstacle, say point 
3*, causing a thickening of the upper layer to match the subcritical downstream flow. 
This behaviour is unlikely in steady two-layer flow over an obstacle, since energy would 
be dissipated primarily in the upper layer, which from (10) would yield an increase in 
internal energy. From figure 14(b) we see that a decrease, not an increase, in internal 
energy is required to match the downstream condition. 

Lawrence (1985) has shown that the term hydraulic drop has been used in the least 
five contexts by previous investigators. However, all the flows observed in the present 
study, and all the published photographs of flows in previous studies, can be explained 
without invoking the presence of a hydraulic drop. For example, in the flows depicted 
in figures 9 and 12 of Long (1954) there is considerable turbulent activity over the lee 
face of the obstacle; however, in figure 9 the disturbance originates at the sidewalls, and 
in figure 12 separation from the lee face of the obstacle occurs. Approach-controlled 
flows exhibiting separation from the lee face of a steep obstacle are shown in figures 
24(b), 24(c),  and 25(a) of Baines (1984). Separation does not occur in figure 24(a) of 
Baines (1984), where he uses a much gentler obstacle. In this experiment the interface 
plunges as in the Approach-controlled flows of the present study. 

5.3.2. Prediction of Approach-controlled flow 
The development of a model to accurately predict the behaviour of Approach- 

controlled flow as it passes over the obstacle is beyond the scope of the present study. 
Several investigators including Pite, Topham & van Hardenberg (1 992), Marchant & 
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FIGURE 15. Comparison between predicted and measured values of upstream influence for all the 
approach-controlled flows: (a) r = t, (b) r = i. Measurements made 1 and 2 m upstream of the 
obstacle are indicated by the symbols A and 0 respectively. 

Smyth (1990), and Melville & Helfrich (1987) have used the forced extended 
Kortewegae Vries (KdV) equation to study transcritical (Go- 1 < 1) flow over an 
obstacle. In addition to the flow being transcritical, the forced extended KdV equation 
assumes that the ratio of the flow depth to the obstacle length Y / L ,  the interface 
deflection at the approach-control (upstream influence) vu, and the relative height of 
the obstacle Pm, are all small. Unfortunately, these conditions do not apply in the 
present study. For the Approach-controlled flows of the present study 

0.17 < 1 -Go < 0.64, 0.44 < Y / L  d 0.87, 0.066 < vu < 0.287, and 0.30 < p, < 0.57. 

Two-layer flow over a towed obstacle has been modelled numerically with considerable 
success by Jameel (1991) using a two-dimensional model based on the Marker and Cell 
technique of Harlow & Welch (1965). This technique will be investigated in future 
modelling of Approach-controlled flows over a fixed obstacle, but for the moment 
some useful results obtained using internal hydraulic theory will be presented. 

Despite the importance of flow curvature elsewhere in Approach-controlled flows, it 
is important to note that there is negligible curvature at the approach-control itself, so 
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FIGURE 16. Photograph and internal energy diagram for experiment 5, a hybrid flow with both an 
approach control (point 1) and a crest control (point 2). 

internal hydraulic theory ought to apply there. The upstream influence, T ~ ,  is 
calculated from the condition of critical flow at the approach control, which, for 
r = 0.5, yields 

(16) 

where 6 = (qJr)'. There is one real root and two complex conjugate roots to this 
equation. The real root is 

5"- 352+ 3(2Gt + 1) f [+  (2Gt- 1) = 0, 

t =  1 -(2G34([(1 +G~/4)++1$-[(1 +G~/4)~-1]~}. (17) 

This equation is used to obtain the theoretical values of upstream influence that are 
plotted on figure 15(u) together with the measured interface deflections both 1 and 2 m 
upstream of the crest of the obstacle for all of the Approach-controlled experiments. 
Measurements were taken at both locations, since the interface elevation is slowly 
changing as a result of friction between the layers and along the bottom and sidewalls 
of the channel. It is these frictional effects that determine the exact location of the 
control. The results show that for all the experiments, except experiment 22, the 
approach-control is between 1 and 2 m upstream of the crest of the obstacle. 
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FIGURE 17. Two comparable approach-controlled flows. (a) An acoustic image of the flow over the 
sill in Observatory Inlet, British Columbia (from Farmer & Denton 1985, figure 4). Note that the 
horizontal scale has been compressed. (b) Photograph of experiment 6; a scaled down approximation 
to the flow depicted in (a). Flow is from right to left in both cases. 

5.3.3.  Hybrid flows 
Experiment 22 is a special case, since it lies close to the boundary separating 

Approach-controlled flow from Supercritical flow in the classification diagram (figure 
8b). In fact, it is a hybrid flow that behaves like an Approach-controlled flow, except 
that it is supercritical upstream of the obstacle. The reason for this behaviour is that 
for flows with Go approaching unity the small change in internal energy caused by 
frictional effects can be important over the 12.8 m length of the flume. This enables the 
flow to be supercritical as it enters the flume and subcritical as it exits, independent of 
whether there is an obstacle in the flume or not. This is evidenced by the fact that when 
the obstacle was removed in experiment 22 an undular jump formed in the channel to 
provide a transition from supercritical to subcritical flow. 

For r + t ,  T~ must be calculated numerically. The results for r = f are plotted on 
figure 15 (b) together with experimental measurements. Again the approach control is 
between 1 and 2 m upstream of the crest, except for a hybrid flow, experiment 10. For 
both r = and hybrid flows occur near the boundary between Approach-controlled 
and Supercritical flows in the classification scheme, as we would expect. 

Hybrid flows also exist that combine feature of both Crest-controlled and Approach- 
controlled flows; experiment 5 is an example of this. Figure 13 shows that the flow is 
critical at the crest and figure 15(a) shows that the flow is also critical at a point 
approximately 2 m upstream of the crest of the obstacle. This observation is supported 
by the (E, q)-plot for this experiment (figure 16b). The internal energy increases from 
E, just upstream of the obstacle, to E, at the crest. Although this flow has an approach 
control, the interface level decreases on the upstream face of the obstacle like a Crest- 
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FIGURE 18. Isopycnals in: (a) Enterprise Passage, where the interface falls as it flows toward the crest, 
indicating crest-controlled flow; and (b) Grafton Passage, where the interface rises as it flows 
toward the crest, indicating approach-controlled flow. Density is measured in a, units, where 
p(aJ = p(kg/m3)- 1000. North is to the right. From Murray et al. (1984, figure 10). 

controlled flow (see figure 16a). Clearly this type of hybrid flow is limited to situations 
where the (E, v)-curve at the crest has a local minimum corresponding to critical flow. 
From (14) this only occurs if 

On the basis of (18) experiment 5 should be the only experiment in the present study 
exhibiting features of both Crest-controlled and Approach-controlled flow. This is 
indeed the case. 

5.3.4. Field observations of Approach-controlled flows 
An acoustic image of flow over a sill in Observatory Inlet, British Columbia is 

presented in figure 17(a). The presence of acoustic reflectors in the water column 
ensures that this image provides a qualitative picture of the flow field. The features of 
an Approach-controlled flow are evident. The interface plunges downstream of the 
crest and then returns to an internally subcritical state via an internal hydraulic jump. 
Since the time taken for the flow to pass over the sill is only of the order of ten minutes 
Farmer & Denton (1985) assume that the flow is steady. They also assume that it is 
two-dimensional and three layered with a thin passive upper layer. Their representation 
of the flow gives r = 0.6, p, = 0.6, and Go = 0.5 for the flow of the lower two layers. 
Of the experiments performed in the present study the one that comes closest to these 
values is experiment 6 ( r  = 0.66, /3, = 0.57, and Go = 0.44) shown in figure 17(b). 
Given the compression of the horizontal scale in figure 17(a), the similarity between the 
two flows is remarkable. Farmer & Denton (1985) hypothesize that the plunging of the 
interface in Observatory Inlet is due to an inverted hydraulic jump or a so-called 
‘hydraulic drop’; this is not the case in experiment 6 and is unlikely to be the case in 
Observatory Inlet. 
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FIGURE 19. Photographs of experiment 12 showing separation in a Supercritical flow. (a) Plan view 
from above the obstacle in experiment 12. Dye particles have been dropped into the flow. In regions 
of unseparated flow these particles rest on the sill and produces long streaklines as they dissolve. The 
streaklines are disrupted as soon as they enter regions of flow separation. (hi) Photographs taken 
at 10 s intervals after the injection of dye onto the lee face of the sill. Boundary-layer separation is 
vigorous enough to mix the injected fluid over the depth of the lower layer, and even cause some 
mixing at the interface. 

Further evidence of Approach-controlled flow is provided by the plots of flow over 
sills in the Tiran Strait between the Gulf of Aqaba and the Red Sea by Murray, Hecht 
& Babcock (1984, figure 10). The flow in Enterprise Passage (figure 18 a) is an exchange 
flow that appears to be critical at the crest. In the Grafton Passage (figure 18b) the flow 
is unidirectional, and, therefore, of less interest from the point of view of exchange 
between the Red Sea and the Gulf of Aqaba; however, it appears to be an example of 
Approach-controlled flow, since the interface remains almost horizontal until beyond 
the crest where it plunges rapidly. 
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FIGURE 20. Comparison of experimental measurements of interfacial elevation at the crest with 
predictions for all the Supercritical flows. +, Experiments with r = %; 0, experiments with r = t. 

5.4. Regime IV:  Supercritical flow 
Experiment 12, depicted in figure 7(d), is an example of Supercritical flow. Since 
Gt > 1 a virtual control occurs in the upstream contraction and the flow is internally 
supercritical as it enters the flume. The flow remains supercritical as it passes through 
the flume and over the obstacle. Downstream of the obstacle the lower layer diverges 
causing an adverse piezometric pressure gradient that results in boundary-layer 
separation. This is demonstrated in the series of photographs presented in figure 19. In 
photograph 19(a), taken from above the flume, dye particles have been dropped into 
the flow. In regions of unseparated flow these particles rest on the sill, and produce long 
streaklines as they dissolve. Particles resting on the sill in the region of flow separation 
produce no streaklines, since the flow is continually changing direction. Note that the 
sidewall boundary layers separate before the bottom boundary layer. Photographs 
19(&d) were taken at 10 second intervals after the injection of dye onto the lee face 
of the sill. They show that the boundary-layer separation is vigorous enough to mix the 
injected fluid throughout the lower layer, and even cause some mixing at the interface. 

Even if there is flow separation it should not affect the flow at the crest. Figure 20 
shows that the predicted interface elevation at the crest is in excellent agreement with 
the measured value for each of the four Supercritical flows (experiments 11, 12,23 and 
24) and for the two hybrid flows combining features of Approach-controlled and 
Supercritical flow (experiments 10 and 22). The predicted values are obtained by 
solving (12) with E = 0 and /? = /?,. 

6.  Conclusions 
The finite length of towing-tank facilities sometimes limits their applicability for the 

study of steady two-layer flow over an obstacle. This is particularly true in the case of 
Approach-controlled flows. Careful study of the variation of interface level in fixed- 
obstacle experiments has provided a more complete understanding of Approach- 
controlled flows. These flows pass from being internally subcritical to being internally 
supercritical (with an active upper layer) at a control located just upstream of the start 
of the obstacle. As the flow passes over the obstacle the upper layer remains active until 
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downstream of the crest where the interface plunges rapidly resulting in an internally 
supercritical flow with an active lower layer. Further downstream an internal hydraulic 
jump transforms the flow back to an internally subcritical state. The plunging of 
the interface in Approach-controlled flows is explained by considering streamline 
curvatures, and the corresponding non-hydrostatic pressures. It is not necessary to 
invoke a shock solution (called an internal hydraulic drop by previous investigators) 
to explain the plunging of the interface. 

The importance of non-hydrostatic pressures is of some concern, since the 
hydrostatic assumption is fundamental to hydraulic theory. Fortunately, however, 
non-hydrostatic pressures are not significant in the vicinity of internal hydraulic 
controls. So the validity of a classification scheme derived on the basis of being able to 
predict when and where internal hydraulic controls occur is not compromised. This 
classification scheme accurately predicts when each of the four basic steady flow 
regimes (Subcritical, Crest-controlled, Approach-controlled and Supercritical flow) 
will occur. 
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Appendix. Symbols and definitions 
Y =  y1+y2+h free surface elevation 

layer thickness (n = 1 or 2) 
lower-layer thickness when u1 = u2 
layer mechanical energy per unit volume (Bernoulli constant) 
densimetric Froude number 
gravitational acceleration 
reduced gravitational acceleration 
obstacle height 
maximum obstacle height 
composite Froude number 
composite Froude number when u1 = u2 
pressure 
piezometric pressure 
layer flow rate 
total flow rate 
flow rate ratio 
layer velocity 
obstacle height (dimensionless) 
maximum obstacle height (dimensionless) 
horizontal position (dimensionless) 
relative density difference 
internal energy (dimensionless) 
internal energy at a crest control 
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71, 
71P 
P 

Subscripts 
n = l  
n = 2  

internal energy at an approach control 
interface deflection (dimensionless) 
upstream influence - the interface deflection upstream of the 

measured interface deflection 
predicted interface deflection 
fluid density 

obstacle 

upper layer 
lower layer 
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